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Esta breve introduccién a SeDuMi estd basada principalmente en el documento Use SeDuMsi to
Solve LP, SDP and SOCP Problems: Remarks and Examples, de Wu-Sheng Lu, de University
of Victoria, Dept. of Electrical and Computer Engineering

menet.math.ecnu.edu.cn/lu/supplementary’20part/SeDuMi-Remarks.pd
SeDuMi, self dual minimization, hecho en Matlab, implementa una técnica au-
todual sobre conos homogéneos autoduales. Sirve para problemas de

e optimizacién lineal (OL o LP),

e optimizacién cénica de segundo orden (SOCP)

e optimizacién semidefinida (SDP).

Se puede descargar en la pagina
http://sedumi.ie.lehigh.edu/

de Cor@l, Computational Optimization Research de Lehigh University en Beth-
lehem, Pennsylvania, E.U.A.

Una vez descargado y descomprimido el archivo, es necesario agregar al path de
Matlab el nombre de la carpeta donde quedaron los archivos descomprimidos.

0.1 Optimizaciéon lineal

donde ¢,z € R™*1 A € R™*" phc R™*! El llamado desde Matlab, es simple-
mente

x = sedumi(A, b, c)

Ejemplo:
c=1[-1-1.400 0]’
a=[11100;12010;1000 1]
b = [400 580 300]’
x = sedumi(a, b, c)



Sedumi produce los siguientes resultados:

SeDuMi 1.1R3 by AdvOL, 2006 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
egs m = 3, order n = 6, dim = 6, blocks =1

nnz(A) = 8 + 0, nnz(ADA) = 9, nnz(L) = 6

it b*y gap delta rate t/tPx t/tD* feas cg cg prec
0 : 1.01E-002 0.000
1 : -4.61E+002 2.56E-003 0.000 0.2545 0.9000 0.9000 2.39 1 1 1.2E+000
2 : -4.65E+002 5.41E-004 0.000 0.2115 0.9000 0.9000 1.59 1 1 1.9E-001
3 : -4.72E+002 1.17E-004 0.000 0.2164 0.9000 0.9000 1.12 1 1 4.0E-002
4 : -4.72E+002 2.56E-006 0.000 0.0218 0.9900 0.9900 1.01 1 1

iter seconds digits Cc*X bxy
4 0.4 Inf -4.7200000000e+002 -4.7200000000e+002

[Ax-b| = 9.5e-014, [Ay-c]_+ = 4.7E-019, |x|= 3.0e+002, |yl|= 7.2e-001

Detailed timing (sec)

Pre IPM Post
2.496E-001 3.588E-001 7.800E-002
Max-norms: ||bl[=580, |lcl|| = 1.400000e+000,
Cholesky |add|=0, |skip|l = 0, [IL.L|| = 1.37397.
x =

(1,1) 220.0000

2,1) 180.0000

(5,1) 80.0000

Si el llamado es [x, y, info] = sedumi(a, b, c), se obtiene ademas

y =

-0.6000
-0.4000
0.0000

info =

iter:
feasratio:
pinf:
dinf:
numerr :
timing: [0 0.0780 0.0312]
cpusec: 0.1092

O O O~ i



0.2 Optimizacion conica de segundo orden, SOCP

En la notacién de [LVBL9S8] un problema de SOCP se puede escribir

min fTx

Az + 0| < z+d; i=1,..,p,

donde
f c Rnxl
T € Rnxl
At e Rlmi=Dxn -y — 1 p
bt e ROm=Dx1 -y —1 . p,
ct e RPx1 i=1,..,p,
d e RP

Con estos datos se construyen la matriz A y los vectores columna b y ¢

m=mi+,mg+ -+ my

A _ [—Cl _AIT —62 _AQT . _Cp _ApT] c Rnxm

dy
bl
do
b2 c Rmx 1

o
Il

by

cP

b=—feR™!

En este caso los datos para utilizar sedumi son: A, b, ¢ y una estructura X
donde se da informacién sobre el cono. Pare este ejemplo, basta con

K.q = [my mg --- mp]

Si Am, bm, cm son matrices de Matlab con la informacién de A, b y ¢, entonces
el llamado es:

[w, x, info] = sedumi( Am, bm, cm, K)



Ejemplo:

min [0000 1]3:

1
|
H

0
2 1.0 0 0 -1 0
65 o sl Bl fof =
_0_
e
001 -2 0 —6 0
llo oo 5 af=e [Efll= of -+
_0_
0T
10 -1 0 0 0 0
o3 S el fof oo
_1_

Este problema de optimizacién cénica de segundo orden, se puede resolver me-
diante:

f=[000001];

Al =[2-1000; 030001;
bl = [-1; -3 1];

ct =[0000017;
d1 = 3;
A2=[001-20;000301;
b2 =[ -6; -6 1;

c2 =[00000171;
d2 = 2;
A3=[10-100;010-10];
b3 =[0; 01;

c3 =[ 000011
d3 = 0;

Am = [ -c1 -A1’> -c2 -A2’ -c3 -A3’ ];
bm = -f;



cm = [ di; bl; d2; b2; d3; b3 1;
K.q = [ size(A1,1)+1 size(A2,1)+1 size(A3,1)+1 ];

[w, x, info] = sedumi( Am, bm, cm, K)

El resultado es:

2.5803
1.3470
7.5965
1.6232
5.0238



0.3 Restricciones cuadraticas

Consideremos una restriccién cuadratica convexa,

t"Hx +p'x+ 5 <0, (1)

donde p y = son vectores columna y H > 0 (matriz simétrica semidefinida
positiva) y los tamafios son compatibles.

Supongamos, adicionalmente que H > 0 (H definida positiva). Los puntos que
cumplen (1) corresponden a un elipsoide con centro en Z de la forma

(z—2)"H(z - 7) < p? (2)

Al desarrollar (2) se obtiene

2 Hr — 2(Hz) 2 + 2" Hz — p* < 0.

Entonces
—2Hxz =1p
TTHz —p* =7

Las igualdades anteriores permiten pasar de Z, p?> a p, 3 y viceversa.

Veamos ahora como convertir la restriccion cuadratica en una restriccion cénica
de segundo orden. Como H > 0, entonces existe J tal que

J'J =H.

Esta matriz puede ser la de la factorizacion de Cholesky o la raiz cuadrada de
H (RR = H) u otra matriz. Sea

es decir,

p=2J"q.



Entonces
2"Hr +p o2+ 5<0
2" I Jr+2¢" Jr+q¢"g—q g+ B<0

1 o1
(27T Tz +2¢"Jz+q"q) — = ((J)™p) (J )"p+B<0

2 2
(Joz+q)" (Jz +q) — ipTJ_l(J_l)Tp +8<0
o+l ~ " H 9+ 5 <0
o +ll? < 3" H '~ 5
En resumen, la restriccion cuadratica convexa
"Hx +p "z + <0,
es equivalente a
1 1/2
7o +all < (3759~ 5) Q
con
J'J=H
q= %(J_l)Tp

0.3.1 Una restriccién cuadratica particular

En el caso anterior se supuso que H > 0. Consideremos el caso en que H y p
tienen una estructura por bloques semejante a la siguiente

0 0 0 0
H=|0 H 0, p=|p
0O 0 O 0

donde los ceros son submatrices nulas de tamanos compatibles y H = 0. Obvia-
mente H > 0 pero H # 0. Sea H € R™™ y H € R™". Si bien se puede
encontrar J € R™*™ tal que o

J'J=H (4)
y asi obtener J € R™*™ tal que J*J = H, no se puede obtener q%(J*I)Tp.

Calculos semejantes a los que permitieron llegar a (3) muestran que en este caso
la restriccién cuadratica convexa x™Hx + pTx + (3 es equivalente a



1/2
o +dll < (77875 - 9) )
J=1[0 J 0], (6)
1= 5. 7)

Obsérvese que ahora J es una matriz rectangular en R"*™ y no cuadrada en
R™*"_ El vector ¢ estd en R?¥1,

Ejemplo. Hallar la distancia minima entre las dos elipes de la forma (z —
¢)TH(xz — c¢) < p?, donde

4 -2 1
le[_Z 10], cl—H, =9,

1 -2 10
w=|y a) e=|) A=

< .

Sean (x1,x2) las coordenadas de un punto en la primera elipse y (x3,24) las
coordenadas de un punto en la segunda elipse, entonces

min ((z1 — 23)% + (22 — m4)2)1/2
([:1:1 xo]" — ¢! "H? ([ml o] — Cl) —p2<0
([rz x4]" —c " H? ([zg 24]" — ) —p3 <0.

Para quitar la funcién objetivo no lineal, se introduce una nueva variable xs,
cota superior para la distancia



([xl xo]T — cl)T H! ([x1 xo]T — cl) —p2<0
([333 r4]" — 02)T H? ([333 r4]" — 02) - P%
(1 — 23)* + (z2 — $4)2)1/2 <z5

Las dos primeras restricciones son cuadraticas convexas que se pueden convertir

en cénicas de segundo orden. La ultima es una restriccion cénica de segundo
.« . T .

orden. De manera matricial, con x = [ml To X3 T4 1:5] se tiene

4 -2 0 0 0 —4
-2 10 0 0 0 —16
210 0 0 0 Olz+]| 0| z+1<0
0 0 0 0 0 0
0 0 0 0 0 0
00 0 0 0 01"
00 0 0 0 0
2710 0 1 =2 0|lz+ |-12| z+68<0
00 -2 13 0 —12
00 0 0 0 0
OT
0
1 0 —1 0 0
llo v 5 S o= ol = fo] =eo
1

Mediante (5), (6) y (7) las dos primeras restricciones se convierten en cénicas y
el problema queda



min [0000 1]:E

1
1
3

0
2 1.0 0 0 -1 0
65 o sl Bl fo) =
0
0T
001 -2 0 —6 0
oo o 5 afee [efll= of =+
_O_
e
10 -1 0 0 0 0
b3 S el fof oo
_1_

Este ejemplo es exactamente el ejemplo de SOCP resuelto con SeDuMi. En-
tonces la distancia minima entre las dos elipses es 5.0238 obtenida entre los
puntos (2.5803, 1.3470) en la primera elipse y (7.5965, 1.6232) en la segunda
elipse.
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0.4 Optimizacion semidefinida

Una de las formas “estdandar” de problemas de SDP esla de SDPLIB, www.nmt . edu/~sdplib,
péagina donde hay una colecciéon de problemas de prueba para SDP.

min ¢y

—A% ¢+ iyiAi =0

i=1
donde

cc RmX1
y € RmX1
Al € RPXP y es simétrica, i=0,1,...,m.

Con estos datos se construyen matrices fl, b y ¢

Ademas, para el cono K,

Si AM, bm, cm son matrices de Matlab con la informacién de A, l~)y ¢, entonces
el llamado es:

[x, y, info] = sedumi( AM, bm, cm, K)

Ejemplo.
min 10y; + 20y2
100 0 40 0 0 0 000 0
o2 o000 fo 100 0f o100 o
0030 "o o 0o %005 27
000 4 0 0 00 00 2 6
En Matlab:
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c = [ 10 20]’;
AO=[1000; 0200; 0030; 000 4];
A1 =40 000; 0100 0; 00 0O0; 000 O0];
A2 =[0000; 0100 ; 0052; 0026];
bm = -c;

cm = -vec(AO)

AM(:,1) = -vec(Al);
AM(:,2) -vec(A2);

K.s = size(AO0,1)

[x, y, info] = sedumi(AM, bm, cm, K)

La solucién es
y=(0.1, 1).

12



0.5 Optimizacion semidefinida con restricciones

lineales
min "y
My >p
—A% 4+ Z Y A" = 0
i=1
donde
c e Rmx1
y c RmX1
M e R1x™
pE qul

A" € RP*P y es simétrica, i=0,1,...,m.

Con estos datos se construyen matrices fl, b y ¢

~ -M
=[]
Ademas, para el cono K,
K.s =p
K.1 =gq

Si AM, bm, cm son matrices de Matlab con la informacién de fl, l~7y ¢, entonces
el llamado es:

[x, y, info] = sedumi( AM, bm, cm, K)

13



Ejemplo.

min 10y; + 20y2

4y +y2 > 3.6
100 0 40 0 0 0 000 0
020 0 0 10 0 0 010 0
“lo o3 0ol |o 0 0o/ T¥0 0 5 27
000 4 0 0 0 0 00 2 6
En Matlab:
c=1[10 20]7;
M=T[4 1];
p=1[23.6];
AO=[1000; 0200; 0030; 000 4];
AL = [40000; 0100 0; 000 0; 000 0];
A2=[0000;0100;0052;0026];
bm = -c;

cm = [-p; -vec(A0) ]

AM(:,1) = -vec(Al);
AM(:,2) = -vec(A2);
AM = [-M; AM]

K.s = size(A0,1);
K.1 = size(M,1);

[x, y, info] = sedumi(AM, bm, cm, K)

La solucién es
y=(0.65, 1).

14



0.6 Restricciones conicas de segundo orden Yy
SDP

Se puede mostrar que

tlI  u
i<t = |1 5] =0
Ejemplo: (tomado de Cornuejols, p. 183) Se conoce una matriz N simétrica,
con unos en la diagonal y se supone que es una aproximaciéon de una matriz de
correlaciones pero no es semidefinida positiva. Se desea encontrar una matriz %
parecida a X (en el sentido de minimos cuadrados) que sea semidefinida positiva.

Sean

1.0 0.8 0.5 0.2 1.0 11 v v
$_ |08 10 09 01 s |y 10w ows
05 09 1.0 0.7/’ Y2 ya 1.0 e
0.2 0.1 0.7 1.0 ys  yYs ye 1.0

Se desea resolver el siguiente problema de optimizacion:

min ||X - 3||p
% = 0.

La norma || ||F es la norma de Frobenius,

1/2

IMlp={>D m3
i

La funcién objetivo, que no es lineal, se puede convertir en lineal mediante la
introduccién de un nueva variable, cota superior para ||X — X||p.

min yy
1= = 3lr <y
3 =0,
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min  yy
(2031 — 0.8)* +2(y2 — 0.5)> + 2(ys — 0.2)>+
2(ys — 0.9)% +2(y5 — 0.1)> + 2(ys — 0.7)% )/2 < g7

7
—Ao + Z yidi =0,
=1

donde
0100 0010 00 0 1
1 000 0000 00 00
A== =159 0 o> 7|1 000" |00 o0 o
00 00 0000 1000
0000 0000 0000
0010 000 1 0000
As=10 1 0 ol M= 1o 0 0 ol 4 {0 0 0 1] A0
0000 0100 0010
Entonces
min  yy
1§ —oll < kyr
7
—Ao+ > yidi = 0,
i=1
con
1 -
k=—, 9=[y1 v vs w1 ¥5s ¥ , o=[08 05 02 09 01 0.7]",
V2
min yr
kyzlse  §—o0
[QT_UT ky7 =0

7
—Ap + ZyiAi =0,
im1

16



min y7

7
—By + Z%‘Bi =0,
i=1

7
—Ao + Z%Ai =0,
i=1

donde
[0 0 0 0 0 0 0.8] [0
0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.2 0
By=10 0 0 0 0 0 09|, B=10
0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0.7 0
108 05 02 09 01 07 O | 11
[0 0 0 0 0 0 0]
0O 00 0 0 0 O
0O 00 0 0 0 O
,Bg=|0 0 0 0 0 O O|, Br=klI;.
0O 00 0 0 0 O0
0O 00 0 0 0 1
00 0 0 0 1 0f
min Yy
7
7A0+zyiAz¢Oa
i=1
con
B, 0 B
A; [O Ai]’ i=0,..7
En Matlab

c=[000000 1]’;

AO

A2

-eye(4,4);
Al = zeros(4,4); A1(1,2)
zeros(4,4); A2(1,3)

1; A1(2,1) =
1; A2(3,1)

|
-
-

]
-
..
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A3 = zeros(4,4); A3(1,4)
A4 = zeros(4,4); A4(2,3)
A5 = zeros(4,4); A5(2,4)
A6 = zeros(4,4); A6(3,4)

; A3(4,1)
; A4(3,2)
; A5(4,2)

T

A7 = zeros(4,4);

k = 1/sqrt(2);

sigma = [

BO = zeros(7,7); B0(1:6,7) =
Bl = zeros(7,7); B1(1,7) =1
B2 = zeros(7,7); B2(2,7) =1
B3 = zeros(7,7); B3(3,7) =1
B4 = zeros(7,7); B4(4,7) =1
B5 = zeros(7,7); B5(5,7) =1
B6 = zeros(7,7); B6(6,7) =1

0.8 0.5 0.2 0.9 0.10.7];

; B1(7,1)
; B2(7,2)
; B3(7,3)
; B4(7,4)
; B5(7,5)
; B6(7,6)

B7 = kxeye(7,7);

AAO = [BO zeros(7,4);zeros(4,7) AO];
AA1 = [B1 zeros(7,4);zeros(4,7) Al];
AA2 = [B2 zeros(7,4);zeros(4,7) A2];
AA3 = [B3 zeros(7,4);zeros(4,7) A3];
AA4 = [B4 zeros(7,4);zeros(4,7) A4];
AA5 = [B5 zeros(7,4);zeros(4,7) A5];
AA6 = [B6 zeros(7,4);zeros(4,7) A6];
AA7 = [B7 zeros(7,4);zeros(4,7) A7];
bm = -c;

cm = -vec(AAO);

AM(:,1) = -vec(AAl);

AM(:,2) = -vec(AA2);

AM(:,3) = -vec(AA3);

AM(:,4) = -vec(AA4d);

AM(:,5) = -vec(AAB);

AM(:,6) = -vec(AAB);

AM(:,7) = -vec(AAT7);

K.s = size(AAO,1);

[x, y, info] = sedumi(AM, bm, cm, K)

La solucién es:
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sigma; BO(7,1:6)

=1;

’

1
1;
1
1
1

B

sigma;



Entonces

Ejemplo: La matriz de correlaciones resultado del ejemplo anterior es singular
o casi singular, det(X) = —1.6700 x 1079 (el valor propio minimo es nulo o
casi nulo), lo que indica redundancia entre las variables explicativas. Se desea
ahora que el valor propio minimo de ¥ sea mayor o igual a 0.2. Esta restriccion

y = (0.7710,0.5291, 0.1835, 0.8153, 0.1480, 0.6517, 0.1660)

1

0.7710 0.5291 0.1835

0.7710 1
0.5291 0.8153 1

M=

|2 = 3||F = y7 = 0.1660.

adicional se puede escribir

0.8153 0.1480
0.6517
0.1835 0.1480 0.6517 1

Y—tI=0.

con t = 0.2. El problema resultante es

En el ejemplo anterior Ag = —1I, ahora Ag = —(1 —¢)I.

min y7
1= = 3llr <y
X—tI=0.

c=[000000 1]7;

t =0.2;

A0 = -(1-t)*eye(4,4);

Al = zeros(4,4); A1(1,2) = 1; A1(2,1) = 1;
A2 = zeros(4,4); A2(1,3) = 1; A2(3,1) = 1;
A3 = zeros(4,4); A3(1,4) = 1; A3(4,1) = 1;
A4 = zeros(4,4); A4(2,3) = 1; A4(3,2) = 1;
A5 = zeros(4,4); A5(2,4) = 1; A5(4,2) = 1;
A6 = zeros(4,4); A6(3,4) = 1; A6(4,3) = 1;
A7 = zeros(4,4);

k = 1/sqrt(2);

sigma = [ 0.8 0.5 0.2 0.9 0.1 0.7];

BO = zeros(7,7); BO(1:6,7) = sigma; BO(7,1:6)
Bl = zeros(7,7); B1(1,7) = 1; B1(7,1) = 1;
B2 = zeros(7,7); B2(2,7) = 1; B2(7,2) = 1;
B3 = zeros(7,7); B3(3,7) = 1; B3(7,3) = 1;
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B4 = zeros(7,7); B4(4,7)
B5 = zeros(7,7); B5(5,7)
B6 = zeros(7,7); B6(6,7)
B7 = kxeye(7,7);

1; B4(7,4) = 1;
1; B5(7,5) = 1;
1; B6(7,6) = 1;

AAO = [BO zeros(7,4);zeros(4,7) AO];
AA1 = [B1 zeros(7,4);zeros(4,7) Al]l;
AA2 = [B2 zeros(7,4);zeros(4,7) A2];
AA3 = [B3 zeros(7,4);zeros(4,7) A3];
AA4 = [B4 zeros(7,4);zeros(4,7) A4];
AA5 = [B5 zeros(7,4);zeros(4,7) A5];
AA6 = [B6 zeros(7,4);zeros(4,7) A6];
AA7 = [B7 zeros(7,4);zeros(4,7) AT];

bm = -c;
cm = -vec(AAO);

AM(:,1) = -vec(AAl);
AM(:,2) = -vec(AA2);
AM(:,3) = -vec(AA3);
AM(:,4) = -vec(AAd);
AM(:,5) = -vec(AA5);
AM(:,6) = -vec(AAB);
AM(:,7) = -vec(AAT);

K.s = size(AAO,1);
[x, y, info] = sedumi(AM, bm, cm, K)

Sigma = [1 y(1) y(2) y(3); y(1) 1 y(4) y(&); y(2) y(4) 1 y(6); y(3) y(5) y(6) 1]
v_prop = eig(Sigma)

La solucién es:

y = (0.7341,0.5673,0.1648,0.6783,0.2161, 0.5815, 0.4166)
Entonces

1 0.7341 0.5673 0.1648
0.7341 1 0.6783 0.2161
0.5673 0.6783 1 0.5815
0.1648 0.2161 0.5815 1

12 = S||F = yr = 0.4166,
valores propios : 0.2000, 0.2949, 0.9794, 2.5257.

=
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