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Esta breve introducción a SeDuMi está basada principalmente en el documento Use SeDuMi to

Solve LP, SDP and SOCP Problems: Remarks and Examples, de Wu-Sheng Lu, de University

of Victoria, Dept. of Electrical and Computer Engineering

menet.math.ecnu.edu.cn/lu/supplementary%20part/SeDuMi-Remarks.pd

SeDuMi, self dual minimization, hecho en Matlab, implementa una técnica au-
todual sobre conos homogéneos autoduales. Sirve para problemas de

• optimización lineal (OL o LP),

• optimización cónica de segundo orden (SOCP)

• optimización semidefinida (SDP).

Se puede descargar en la página

http://sedumi.ie.lehigh.edu/

de Cor@l, Computational Optimization Research de Lehigh University en Beth-
lehem, Pennsylvania, E.U.A.

Una vez descargado y descomprimido el archivo, es necesario agregar al path de
Matlab el nombre de la carpeta donde quedaron los archivos descomprimidos.

0.1 Optimización lineal

min
x

cTx

Ax = b

x ≥ 0,

donde c, x ∈ Rn×1, A ∈ Rm×n, b ∈ Rm×1. El llamado desde Matlab, es simple-
mente

x = sedumi(A, b, c)

Ejemplo:

c = [-1 -1.4 0 0 0]’

a = [ 1 1 1 0 0; 1 2 0 1 0; 1 0 0 0 1]

b = [400 580 300]’

x = sedumi(a, b, c)
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Sedumi produce los siguientes resultados:

SeDuMi 1.1R3 by AdvOL, 2006 and Jos F. Sturm, 1998-2003.

Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500

eqs m = 3, order n = 6, dim = 6, blocks = 1

nnz(A) = 8 + 0, nnz(ADA) = 9, nnz(L) = 6

it : b*y gap delta rate t/tP* t/tD* feas cg cg prec

0 : 1.01E-002 0.000

1 : -4.61E+002 2.56E-003 0.000 0.2545 0.9000 0.9000 2.39 1 1 1.2E+000

2 : -4.65E+002 5.41E-004 0.000 0.2115 0.9000 0.9000 1.59 1 1 1.9E-001

3 : -4.72E+002 1.17E-004 0.000 0.2164 0.9000 0.9000 1.12 1 1 4.0E-002

4 : -4.72E+002 2.56E-006 0.000 0.0218 0.9900 0.9900 1.01 1 1

iter seconds digits c*x b*y

4 0.4 Inf -4.7200000000e+002 -4.7200000000e+002

|Ax-b| = 9.5e-014, [Ay-c]_+ = 4.7E-019, |x|= 3.0e+002, |y|= 7.2e-001

Detailed timing (sec)

Pre IPM Post

2.496E-001 3.588E-001 7.800E-002

Max-norms: ||b||=580, ||c|| = 1.400000e+000,

Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.37397.

x =

(1,1) 220.0000

(2,1) 180.0000

(5,1) 80.0000

Si el llamado es [x, y, info] = sedumi(a, b, c) , se obtiene además

y =

-0.6000

-0.4000

0.0000

info =

iter: 4

feasratio: 1

pinf: 0

dinf: 0

numerr: 0

timing: [0 0.0780 0.0312]

cpusec: 0.1092
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0.2 Optimización cónica de segundo orden, SOCP

En la notación de [LVBL98] un problema de SOCP se puede escribir

min fTx

||Aix + bi|| ≤ ciTx + di i = 1, ..., p,

donde

f ∈ Rn×1

x ∈ Rn×1

Ai ∈ R(mi−1)×n , i = 1, ..., p,

bi ∈ R(mi−1)×1 , i = 1, ..., p,

ci ∈ Rn×1 , i = 1, ..., p,

d ∈ Rp

Con estos datos se construyen la matriz Ã y los vectores columna b̃ y c̃:

m = m1+,m2 + · · · + mp

Ã =
[

−c1 −A1T −c2 −A2T · · · −cp −ApT
]

∈ Rn×m

c̃ =























d1

b1

d2

b2

...
bp

cp























∈ Rm×1

b̃ = −f ∈ Rn×1

En este caso los datos para utilizar sedumi son: Ã, b̃, c̃ y una estructura K

donde se da información sobre el cono. Pare este ejemplo, basta con

K.q = [ m1 m2 · · · mp ]

Si Am, bm, cm son matrices de Matlab con la información de Ã, b̃ y c̃, entonces
el llamado es:

[w, x, info] = sedumi( Am, bm, cm, K)
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Ejemplo:

min
[

0 0 0 0 1
]

x

∣

∣

∣

∣

∣

∣

∣

∣

[

2 −1 0 0 0
0 3 0 0 0

]

x +

[

−1
−3

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
0













T

x + 3

∣

∣

∣

∣

∣

∣

∣

∣

[

0 0 1 −2 0
0 0 0 3 0

]

x +

[

−6
−6

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
0













T

x + 2

∣

∣

∣

∣

∣

∣

∣

∣

[

1 0 −1 0 0
0 1 0 −1 0

]

x +

[

0
0

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
1













T

x + 0

Este problema de optimización cónica de segundo orden, se puede resolver me-
diante:

f = [ 0 0 0 0 1]’;

A1 = [ 2 -1 0 0 0; 0 3 0 0 0 ];

b1 = [-1; -3 ];

c1 = [ 0 0 0 0 0 ]’;

d1 = 3;

A2 = [ 0 0 1 -2 0; 0 0 0 3 0 ];

b2 = [ -6; -6 ];

c2 = [ 0 0 0 0 0 ]’;

d2 = 2;

A3 = [ 1 0 -1 0 0 ; 0 1 0 -1 0];

b3 = [ 0; 0 ];

c3 = [ 0 0 0 0 1 ]’;

d3 = 0;

Am = [ -c1 -A1’ -c2 -A2’ -c3 -A3’ ];

bm = -f;
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cm = [ d1; b1; d2; b2; d3; b3 ];

K.q = [ size(A1,1)+1 size(A2,1)+1 size(A3,1)+1 ];

[w, x, info] = sedumi( Am, bm, cm, K)

El resultado es:

x =

2.5803

1.3470

7.5965

1.6232

5.0238
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0.3 Restricciones cuadráticas

Consideremos una restricción cuadrática convexa

xTHx + pTx + β ≤ 0, (1)

donde p y x son vectores columna y H º 0 (matriz simétrica semidefinida
positiva) y los tamaños son compatibles.

Supongamos, adicionalmente que H ≻ 0 (H definida positiva). Los puntos que
cumplen (1) corresponden a un elipsoide con centro en x̄ de la forma

(x − x̄)TH(x − x̄) ≤ ρ2 (2)

Al desarrollar (2) se obtiene

xTHx − 2(Hx̄)Tx + x̄THx̄ − ρ2 ≤ 0.

Entonces

−2Hx̄ = p

x̄THx̄ − ρ2 = β

Las igualdades anteriores permiten pasar de x̄, ρ2 a p, β y viceversa.

Veamos ahora cómo convertir la restricción cuadrática en una restricción cónica
de segundo orden. Como H ≻ 0, entonces existe J tal que

JTJ = H.

Esta matriz puede ser la de la factorización de Cholesky o la ráız cuadrada de
H (RR = H) u otra matriz. Sea

q =
1

2
(J−1)Tp ,

es decir,

p = 2JTq .
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Entonces

xTHx + pTx + β ≤ 0

xTJTJx + 2qTJx + qTq − qTq + β ≤ 0

( xTJTJx + 2qTJx + qTq ) − 1

2

(

(J−1)Tp
)

T 1

2
(J−1)Tp + β ≤ 0

(Jx + q)
T

(Jx + q) − 1

4
pTJ−1(J−1)Tp + β ≤ 0

||Jx + q||2 − 1

4
pTH−1p + β ≤ 0

||Jx + q||2 ≤ 1

4
pTH−1p − β

En resumen, la restricción cuadrática convexa

xTHx + pTx + β ≤ 0,

es equivalente a

||Jx + q|| ≤
(

1

4
pTH−1p − β

)1/2

(3)

con

JTJ = H

q =
1

2
(J−1)Tp .

0.3.1 Una restricción cuadrática particular

En el caso anterior se supuso que H ≻ 0. Consideremos el caso en que H y p

tienen una estructura por bloques semejante a la siguiente

H =





0 0 0
0 H̄ 0
0 0 0



 , p =





0
p̄

0





donde los ceros son submatrices nulas de tamaños compatibles y H̄ ≻ 0. Obvia-
mente H º 0 pero H ⊁ 0. Sea H ∈ Rn×n y H̄ ∈ Rn̄×n̄. Si bien se puede
encontrar J̄ ∈ Rn̄×n̄ tal que

J̄TJ̄ = H̄ (4)

y aśı obtener J ∈ Rn×n tal que JTJ = H, no se puede obtener q 1
2 (J−1)Tp.

Cálculos semejantes a los que permitieron llegar a (3) muestran que en este caso
la restricción cuadrática convexa xTHx + pTx + β es equivalente a
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||Jx + q|| ≤
(

1

4
p̄TH̄−1p̄ − β

)1/2

(5)

con

J =
[

0 J̄ 0
]

, (6)

q =
1

2
(J̄−1)T p̄ . (7)

Obsérvese que ahora J es una matriz rectangular en Rn̄×n y no cuadrada en
Rn×n. El vector q está en Rn̄×1.

Ejemplo. Hallar la distancia mı́nima entre las dos elipes de la forma (x −
c)TH(x − c) ≤ ρ2, donde

H1 =

[

4 −2
−2 10

]

, c1 =

[

1
1

]

, ρ2
1 = 9,

H2 =

[

1 −2
−2 13

]

, c2 =

[

10
2

]

, ρ2
2 = 4.

2 4 6 8 10 12

2

b

b

Sean (x1, x2) las coordenadas de un punto en la primera elipse y (x3, x4) las
coordenadas de un punto en la segunda elipse, entonces

min
(

(x1 − x3)
2 + (x2 − x4)

2
)1/2

(

[x1 x2]
T − c1

)

T

H1
(

[x1 x2]
T − c1

)

− ρ2
1 ≤ 0

(

[x3 x4]
T − c2

)

T

H2
(

[x3 x4]
T − c2

)

− ρ2
2 ≤ 0 .

Para quitar la función objetivo no lineal, se introduce una nueva variable x5,
cota superior para la distancia
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min x5
(

[x1 x2]
T − c1

)

T

H1
(

[x1 x2]
T − c1

)

− ρ2
1 ≤ 0

(

[x3 x4]
T − c2

)

T

H2
(

[x3 x4]
T − c2

)

− ρ2
2 ≤ 0 .

(

(x1 − x3)
2 + (x2 − x4)

2
)1/2 ≤ x5

Las dos primeras restricciones son cuadráticas convexas que se pueden convertir
en cónicas de segundo orden. La última es una restricción cónica de segundo
orden. De manera matricial, con x =

[

x1 x2 x3 x4 x5

]

T

se tiene

min
[

0 0 0 0 1
]

x

xT













4 −2 0 0 0
−2 10 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













x +













−4
−16
0
0
0













T

x + 1 ≤ 0

xT













0 0 0 0 0
0 0 0 0 0
0 0 1 −2 0
0 0 −2 13 0
0 0 0 0 0













x +













0
0

−12
−12
0













T

x + 68 ≤ 0

∣

∣

∣

∣

∣

∣

∣

∣

[

1 0 −1 0 0
0 1 0 −1 0

]

x +

[

0
0

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
1













T

x + 0

Mediante (5), (6) y (7) las dos primeras restricciones se convierten en cónicas y
el problema queda
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min
[

0 0 0 0 1
]

x

∣

∣

∣

∣

∣

∣

∣

∣

[

2 −1 0 0 0
0 3 0 0 0

]

x +

[

−1
−3

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
0













T

x + 3

∣

∣

∣

∣

∣

∣

∣

∣

[

0 0 1 −2 0
0 0 0 3 0

]

x +

[

−6
−6

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
0













T

x + 2

∣

∣

∣

∣

∣

∣

∣

∣

[

1 0 −1 0 0
0 1 0 −1 0

]

x +

[

0
0

]∣

∣

∣

∣

∣

∣

∣

∣

≤













0
0
0
0
1













T

x + 0

Este ejemplo es exactamente el ejemplo de SOCP resuelto con SeDuMi. En-
tonces la distancia mı́nima entre las dos elipses es 5.0238 obtenida entre los
puntos (2.5803, 1.3470) en la primera elipse y (7.5965, 1.6232) en la segunda
elipse.
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0.4 Optimización semidefinida

Una de las formas “estándar” de problemas de SDP es la de SDPLIB, www.nmt.edu/~sdplib,
página donde hay una colección de problemas de prueba para SDP.

min cTy

−A0 +

m
∑

i=1

yiA
i
< 0

donde

c ∈ Rm×1

y ∈ Rm×1

Ai ∈ Rp×p y es simétrica , i = 0, 1, ...,m.

Con estos datos se construyen matrices Ã, b̃ y c̃

b̃ = −c

c̃ = −vec(A0)

Ã(:, i) = −vec(Ai) , i = 1, ...,m

Además, para el cono K,
K.s = p

Si AM, bm, cm son matrices de Matlab con la información de Ã, b̃ y c̃, entonces
el llamado es:

[x, y, info] = sedumi( AM, bm, cm, K)

Ejemplo.

min 10y1 + 20y2

−









1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4









+ y1









40 0 0 0
0 10 0 0
0 0 0 0
0 0 0 0









+ y2









0 0 0 0
0 1 0 0
0 0 5 2
0 0 2 6









< 0

En Matlab:
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c = [ 10 20]’;

A0 = [1 0 0 0; 0 2 0 0; 0 0 3 0; 0 0 0 4];

A1 = [40 0 0 0; 0 10 0 0; 0 0 0 0; 0 0 0 0];

A2 = [0 0 0 0; 0 1 0 0 ; 0 0 5 2; 0 0 2 6];

bm = -c;

cm = -vec(A0)

AM(:,1) = -vec(A1);

AM(:,2) = -vec(A2);

K.s = size(A0,1)

[x, y, info] = sedumi(AM, bm, cm, K)

La solución es
y = ( 0.1, 1 ).
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0.5 Optimización semidefinida con restricciones

lineales

min cTy

My ≥ p

−A0 +

m
∑

i=1

yiA
i
< 0

donde

c ∈ Rm×1

y ∈ Rm×1

M ∈ Rq×m

p ∈ Rq×1

Ai ∈ Rp×p y es simétrica , i = 0, 1, ...,m.

Con estos datos se construyen matrices Ã, b̃ y c̃

b̃ = −c

c̃ =

[

−p

−vec(A0)

]

Ā(:, i) = −vec(Ai) , i = 1, ...,m

Ã =

[

−M

Ā

]

Además, para el cono K,

K.s = p

K.l = q

Si AM, bm, cm son matrices de Matlab con la información de Ã, b̃ y c̃, entonces
el llamado es:

[x, y, info] = sedumi( AM, bm, cm, K)
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Ejemplo.

min 10y1 + 20y2

4y1 + y2 ≥ 3.6

−









1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4









+ y1









40 0 0 0
0 10 0 0
0 0 0 0
0 0 0 0









+ y2









0 0 0 0
0 1 0 0
0 0 5 2
0 0 2 6









< 0

En Matlab:

c = [ 10 20]’;

M = [ 4 1];

p = [ 3.6];

A0 = [1 0 0 0; 0 2 0 0; 0 0 3 0; 0 0 0 4];

A1 = [40 0 0 0; 0 10 0 0; 0 0 0 0; 0 0 0 0];

A2 = [0 0 0 0; 0 1 0 0 ; 0 0 5 2; 0 0 2 6];

bm = -c;

cm = [-p; -vec(A0) ]

AM(:,1) = -vec(A1);

AM(:,2) = -vec(A2);

AM = [-M; AM]

K.s = size(A0,1);

K.l = size(M,1);

[x, y, info] = sedumi(AM, bm, cm, K)

La solución es
y = ( 0.65, 1 ).
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0.6 Restricciones cónicas de segundo orden y

SDP

Se puede mostrar que

||u|| ≤ t ⇒
[

tI u

uT t

]

< 0

Ejemplo: (tomado de Cornuejols, p. 183) Se conoce una matriz Σ̂ simétrica,
con unos en la diagonal y se supone que es una aproximación de una matriz de
correlaciones pero no es semidefinida positiva. Se desea encontrar una matriz Σ
parecida a Σ̂ (en el sentido de mı́nimos cuadrados) que sea semidefinida positiva.

Sean

Σ̂ =









1.0 0.8 0.5 0.2
0.8 1.0 0.9 0.1
0.5 0.9 1.0 0.7
0.2 0.1 0.7 1.0









, Σ =









1.0 y1 y2 y3

y1 1.0 y4 y5

y2 y4 1.0 y6

y3 y5 y6 1.0









.

Se desea resolver el siguiente problema de optimización:

min ||Σ − Σ̂||F
Σ < 0.

La norma || ||F es la norma de Frobenius,

||M ||F =





∑

i

∑

j

m2
ij





1/2

.

La función objetivo, que no es lineal, se puede convertir en lineal mediante la
introducción de un nueva variable, cota superior para ||Σ − Σ̂||F .

min y7

||Σ − Σ̂||F ≤ y7

Σ < 0,
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min y7

( 2(y1 − 0.8)2 + 2(y2 − 0.5)2 + 2(y3 − 0.2)2+

2(y4 − 0.9)2 + 2(y5 − 0.1)2 + 2(y6 − 0.7)2 )1/2 ≤ y7

−A0 +
7

∑

i=1

yiAi < 0,

donde

A0 = −I, A1 =









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









, A2 =









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









, A3 =









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









,

A4 =









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0









, A5 =









0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0









, A6 =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









, A7 = 0.

Entonces

min y7

||ỹ − σ|| ≤ ky7

−A0 +

7
∑

i=1

yiAi < 0,

con

k =
1√
2
, ỹ =

[

y1 y2 y3 y4 y5 y6

]

T

, σ =
[

0.8 0.5 0.2 0.9 0.1 0.7
]

T

,

min y7
[

ky7I6 ỹ − σ

ỹT − σT ky7

]

< 0

−A0 +

7
∑

i=1

yiAi < 0,
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min y7

−B0 +
7

∑

i=1

yiBi < 0,

−A0 +

7
∑

i=1

yiAi < 0,

donde

B0 =





















0 0 0 0 0 0 0.8
0 0 0 0 0 0 0.5
0 0 0 0 0 0 0.2
0 0 0 0 0 0 0.9
0 0 0 0 0 0 0.1
0 0 0 0 0 0 0.7

0.8 0.5 0.2 0.9 0.1 0.7 0





















, B1 =





















0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0





















,

· · · , B6 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0





















, B7 = k I7.

min y7

−A0 +
7

∑

i=1

yiAi < 0,

con

Ai =

[

Bi 0
0 Ai

]

, i = 0, ..., 7.

En Matlab

c = [ 0 0 0 0 0 0 1]’;

A0 = -eye(4,4);

A1 = zeros(4,4); A1(1,2) = 1; A1(2,1) = 1;

A2 = zeros(4,4); A2(1,3) = 1; A2(3,1) = 1;
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A3 = zeros(4,4); A3(1,4) = 1; A3(4,1) = 1;

A4 = zeros(4,4); A4(2,3) = 1; A4(3,2) = 1;

A5 = zeros(4,4); A5(2,4) = 1; A5(4,2) = 1;

A6 = zeros(4,4); A6(3,4) = 1; A6(4,3) = 1;

A7 = zeros(4,4);

k = 1/sqrt(2);

sigma = [ 0.8 0.5 0.2 0.9 0.1 0.7];

B0 = zeros(7,7); B0(1:6,7) = sigma; B0(7,1:6) = sigma;

B1 = zeros(7,7); B1(1,7) = 1; B1(7,1) = 1;

B2 = zeros(7,7); B2(2,7) = 1; B2(7,2) = 1;

B3 = zeros(7,7); B3(3,7) = 1; B3(7,3) = 1;

B4 = zeros(7,7); B4(4,7) = 1; B4(7,4) = 1;

B5 = zeros(7,7); B5(5,7) = 1; B5(7,5) = 1;

B6 = zeros(7,7); B6(6,7) = 1; B6(7,6) = 1;

B7 = k*eye(7,7);

AA0 = [B0 zeros(7,4);zeros(4,7) A0];

AA1 = [B1 zeros(7,4);zeros(4,7) A1];

AA2 = [B2 zeros(7,4);zeros(4,7) A2];

AA3 = [B3 zeros(7,4);zeros(4,7) A3];

AA4 = [B4 zeros(7,4);zeros(4,7) A4];

AA5 = [B5 zeros(7,4);zeros(4,7) A5];

AA6 = [B6 zeros(7,4);zeros(4,7) A6];

AA7 = [B7 zeros(7,4);zeros(4,7) A7];

bm = -c;

cm = -vec(AA0);

AM(:,1) = -vec(AA1);

AM(:,2) = -vec(AA2);

AM(:,3) = -vec(AA3);

AM(:,4) = -vec(AA4);

AM(:,5) = -vec(AA5);

AM(:,6) = -vec(AA6);

AM(:,7) = -vec(AA7);

K.s = size(AA0,1);

[x, y, info] = sedumi(AM, bm, cm, K)

La solución es:
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y = (0.7710, 0.5291, 0.1835, 0.8153, 0.1480, 0.6517, 0.1660)

Entonces

Σ =









1 0.7710 0.5291 0.1835
0.7710 1 0.8153 0.1480
0.5291 0.8153 1 0.6517
0.1835 0.1480 0.6517 1









||Σ − Σ̂||F = y7 = 0.1660 .

Ejemplo: La matriz de correlaciones resultado del ejemplo anterior es singular
o casi singular, det(Σ) = −1.6700 × 10−9 (el valor propio mı́nimo es nulo o
casi nulo), lo que indica redundancia entre las variables explicativas. Se desea
ahora que el valor propio mı́nimo de Σ sea mayor o igual a 0.2 . Esta restricción
adicional se puede escribir

Σ − t I < 0.

con t = 0.2 . El problema resultante es

min y7

||Σ − Σ̂||F ≤ y7

Σ − t I < 0 .

En el ejemplo anterior A0 = −I, ahora A0 = −(1 − t)I .

c = [ 0 0 0 0 0 0 1]’;

t = 0.2;

A0 = -(1-t)*eye(4,4);

A1 = zeros(4,4); A1(1,2) = 1; A1(2,1) = 1;

A2 = zeros(4,4); A2(1,3) = 1; A2(3,1) = 1;

A3 = zeros(4,4); A3(1,4) = 1; A3(4,1) = 1;

A4 = zeros(4,4); A4(2,3) = 1; A4(3,2) = 1;

A5 = zeros(4,4); A5(2,4) = 1; A5(4,2) = 1;

A6 = zeros(4,4); A6(3,4) = 1; A6(4,3) = 1;

A7 = zeros(4,4);

k = 1/sqrt(2);

sigma = [ 0.8 0.5 0.2 0.9 0.1 0.7];

B0 = zeros(7,7); B0(1:6,7) = sigma; B0(7,1:6) = sigma;

B1 = zeros(7,7); B1(1,7) = 1; B1(7,1) = 1;

B2 = zeros(7,7); B2(2,7) = 1; B2(7,2) = 1;

B3 = zeros(7,7); B3(3,7) = 1; B3(7,3) = 1;
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B4 = zeros(7,7); B4(4,7) = 1; B4(7,4) = 1;

B5 = zeros(7,7); B5(5,7) = 1; B5(7,5) = 1;

B6 = zeros(7,7); B6(6,7) = 1; B6(7,6) = 1;

B7 = k*eye(7,7);

AA0 = [B0 zeros(7,4);zeros(4,7) A0];

AA1 = [B1 zeros(7,4);zeros(4,7) A1];

AA2 = [B2 zeros(7,4);zeros(4,7) A2];

AA3 = [B3 zeros(7,4);zeros(4,7) A3];

AA4 = [B4 zeros(7,4);zeros(4,7) A4];

AA5 = [B5 zeros(7,4);zeros(4,7) A5];

AA6 = [B6 zeros(7,4);zeros(4,7) A6];

AA7 = [B7 zeros(7,4);zeros(4,7) A7];

bm = -c;

cm = -vec(AA0);

AM(:,1) = -vec(AA1);

AM(:,2) = -vec(AA2);

AM(:,3) = -vec(AA3);

AM(:,4) = -vec(AA4);

AM(:,5) = -vec(AA5);

AM(:,6) = -vec(AA6);

AM(:,7) = -vec(AA7);

K.s = size(AA0,1);

[x, y, info] = sedumi(AM, bm, cm, K)

Sigma = [1 y(1) y(2) y(3); y(1) 1 y(4) y(5); y(2) y(4) 1 y(6); y(3) y(5) y(6) 1]

v_prop = eig(Sigma)

La solución es:

y = (0.7341, 0.5673, 0.1648, 0.6783, 0.2161, 0.5815, 0.4166)

Entonces

Σ =









1 0.7341 0.5673 0.1648
0.7341 1 0.6783 0.2161
0.5673 0.6783 1 0.5815
0.1648 0.2161 0.5815 1









||Σ − Σ̂||F = y7 = 0.4166 ,

valores propios : 0.2000, 0.2949, 0.9794, 2.5257 .
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